Cloning and Characterization of *pcd* Encoding ∆'-Piperideine-6-Carboxylate Dehydrogenase from *Flavobacterium lutescens* IFO3084

Tadashi Fujii,¹ Takao Narita, Hitosi Agematu, Naoki Agata, and Kunio Isshiki

Central Research Laboratories, Mercian Corp., 4-9-1, Johnan, Fujisawa 251-0057

Received August 14, 2000; accepted September 26, 2000

The pcd gene from Flavobacterium lutescens IFO3084 encoding Δ' -piperideine-6-carboxylate dehydrogenase (PCD) was cloned, sequenced, and expressed in Escherichia coli. The deduced amino acid sequence of PCD from F. lutescens IFO3084 showed strong similarity to that from Streptomyces clavuligerus. The molecular mass of the recombinant PCD was estimated to be approximately 58,000 Da by SDS-PAGE and native PAGE, which indicated that the enzyme molecule is a monomer. The *in vitro* analysis of L- α aminoadipic acid (L-AAA) production showed that L-AAA is synthesized from L-lysine in two steps catalyzed by L-lysine 6-aminotransferase (LAT) and PCD from F. lutescens IFO3084.

Key words: L- α -aminoadipic acid (L-AAA), *Flavobacterium lutescens* IFO3084, *lat*, *pcd*, Δ' -piperideine-6-carboxylate (P6C).

L- α -Aminoadipic acid (L-AAA), which is a rare amino acid and not observed in proteins, is a precursor of β -lactam antibiotics and various chemicals. In β -lactam antibiotics producing actinomycetes, L-AAA is synthesized, and Llysine 6-aminotransferase (LAT) activity is required for the first step of the L-AAA biosynthetic pathway (1). LAT converts L-lysine into α -aminoadipic semialdehyde, which is spontaneously cyclized to form Δ' -piperideine-6-carboxylate (P6C) (1). The gene encoding LAT (*lat*) is located in the β lactam antibiotics gene cluster in both *Nocardia lactamdurans* (2) and *Streptomyces clavuligerus* (3), whereas it is absent from the genome of most other actinomycetes, confirming that LAT is specific for secondary metabolism.

In the case of the gram-negative bacterium *Flavobacte*rium lutescens IFO3084, L-AAA is also synthesized and LAT is essential for the first step of the L-AAA biosynthetic pathway (4). Recently, we cloned and sequenced the gene encoding LAT (*lat*) from *F. lutescens* IFO3084 (5). The native PAGE analysis of purified LAT showed a single band corresponding to a molecular mass of about 110 kDa. *lat* encodes a protein of 493 amino acids with a deduced molecular weight of 53,200, which is very close to that of purified LAT determined by SDS-PAGE. The expression in *Escherichia coli* revealed that *lat* encodes a single subunit protein with LAT activity. Thus, LAT from *F. lutescens* IFO3084, like most other aminotransferases, is derived from a single ORF and is active as a homodimer.

Recently, the enzyme responsible for catalyzing the conversion of P6C into L-AAA, named Δ' -piperideine-6-carboxylate dehydrogenase (PCD), was first identified in *S. clavuligerus* (6). The purified PCD, a monomer of 56.2 kDa, utilizes both P6C and NAD⁺ efficiently as substrates. DNA

© 2000 by The Japanese Biochemical Society.

sequencing of the *pcd* gene from *S. clavuligerus* revealed that PCD shows a strong similarity to various aldehyde dehydrogenases, especially to an aldehyde dehydrogenase from *Cenorhabditis elegans* (7). PCD activity was also found in other β -lactam antibiotics producers, but not in the non-producing actinomycetes (6). Furthermore, the gene encoding PCD (*pcd*) is located in the β -lactam antibiotics gene cluster (7). Thus, PCD is a specific enzyme in the biosynthetic pathway of L-AAA, a precursor of β -lactam antibiotics.

In this study, we cloned and sequenced pcd from F. lutescens IFO3084, and showed that L-AAA is synthesized from L-lysine in two steps catalyzed by LAT and PCD from F. lutescens IFO3084.

MATERIALS AND METHODS

Bacterial Strains—F. lutescens IFO3084 was used as an L-AAA—producing microorganism. A mutant strain designated HGN1, which is incapable of producing L-AAA, was derived from strain F. lutescens IFO3084 by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis (see below).

Media—F. lutescens IFO3084 and E. coli strains were cultivated at 32°C in L-broth (polypepton 1.0%, yeast extract 0.5%, NaCl 0.5%, glucose 0.1%, pH 7.2) for the isolation of chromosomal DNA and electro-transformation. Transformants of F. lutescens IFO3084 and E. coli were spread on L-agar plates (polypepton 1.0%, yeast extract 0.5%, NaCl 0.5%, glucose 0.1%, Bacto agar 1.5%, pH 7.2) and grown in L-broth containing 20 μ g/ml kanamycin sulfate. Some of the mutant cells of F. lutescens IFO3084 were spread on MEM-agar plates (polypepton 0.5%, yeast extract 0.2%, L-lysine HCl 1.0%, methylen blue 0.006%, eosin Y 0.04%, Bacto agar 1.5%, pH 7.2) for the isolation of L-AAA non-producing mutants. F. lutescens were grown in SC medium (polypepton 1.0%, yeast extract 0.2%, L-lysine HCl 1.0%, pH 7.2) for TLC analysis.

Construction of Plasmids—A vector plasmid pCF704 was constructed and used for the cloning experiments. Briefly, a

¹ To whom correspondence should be addressed. Tel: +81-466-35-1519, Fax: +81-466-35-1524, E-mail: tfujii@cityfujisawa.ne.jp Abbreviations: P6C, piperideine-6-carboxylate; PCD, piperideine-6carboxylate dehydrogenase; LAT, L-lysine 6-aminotransferase; AAA,

L-α-aminoadipic acid.

95 bp fragment containing a multi-cloning site of pUC19 was amplified by PCR, with primers designed based on the sequences of pUC19 containing an EcoRI site at one end (5'-ACGAATTCGAGCTCGGTA-3'; the underlined quence indicates an EcoRI site) and a NcoI site at the other end (5'-TCCCATGGACGACGTTGTA-3'; the underlined sequence indicates a NcoI site), and then cloned into the EcoRI-NcoI site of pBBR122 (Mo Bi Tec). The chromosomal DNA from F. lutescens IFO3084 partially digested with Sau3AI and fractionated by agarose gel electrophoresis to give fragments in the size range of 4-6 kb was ligated to the unique BamHI site of pCF704 for the gene library. pCF213 was selected from the library by the cloning procedure. pCF235 was constructed by subcloning the 2,501 bp NotI fragment from pCF213, which had been blunt-ended with T4 polymerase, into the HincII site of pCF704.

Isolation of L-AAA Non-Producing Mutants-F. lutescens IFO3084, from a frozen glycerol stock, was grown overnight at 32°C in L-broth, and 100 µl of the broth was added to 50 ml L-broth. Cells grown at 32°C for 4.5 h were collected, washed, and suspended in 0.2 M phosphate buffer (pH 6.0). The cells were treated with NTG (final concentration 1.3 mg/ml) at 32°C for 20 min, added to 50 ml L-broth, and grown at 32°C for 17 h. Glycerol (final concentration 30%) was added and the culture was stored at -70°C as the mutant glycerol stock. Some of the mutant glycerol stock samples were diluted with 0.85% NaCl to 10,000 cells per ml and spread on MEM-agar plates. After incubation at 32°C for 3 days, white colonies were dispersed in 1 ml SC medium. After cultivation at 32°C for 2 days, 3 µl of each culture was transferred to a TLC plate (Merck Art. 13143) and the plates were developed with solvent (1-buthanol: acetic acid: $H_2O = 3:1:1$). The clones of interest, non-producing mutants, did not produce an L-AAA spot on the TLC plate, as detected by the ninhydrin reaction.

Cloning Procedure—Cells of the L-AAA non-producing mutant HGN1 harboring a recombinant plasmid were diluted with 0.85% NaCl to 10,000 cells per ml and spread on MEM-agar plates containing 20 μ g/ml kanamycin sulfate. After incubation at 32°C for 3 days, red colonies, which were expected to result from the production of L-AAA, were dispersed in 1 ml SC medium containing 20 μ g/ml kanamycin sulfate and subjected to TLC analysis. The clones of interest showed a spot of L-AAA on the TLC plate.

Electro-Transformation—F. lutescens IFO3084 from a frozen glycerol stock were grown overnight at 32°C in Lbroth, and 100 μ l of the broth was added to 50 ml L-broth. Cells grown at 32°C for 4.5 h were collected, washed, and suspended in 10% glycerol. These electroporation cells were thawed on ice and 1 μ l of DNA solution in water (200 μ g/ ml) was added. The mixture was pulsed with a Gene Pulser II (Bio-Rad) at 2.4 kV with 25 μ F and 200 Ω in chilled 0.2 cm electroporation cuvettes. Immediately after pulsing, the cells were transferred to Falcon 2059 tubes and mixed with 1 ml of L-broth. These cells were grown at 32°C for 2 h and spread on L-agar plates containing 20 μ g/ml kanamycin sulfate. Colonies formed after incubation at 32°C for 2 days.

Construction of a PCD Expression Plasmid—Two primers, primer Ex1 and primer Ex2, were prepared for PCR to obtain open reading frame (ORF) 3. Primer Ex1 was designed on the basis of the N-terminal sequence of ORF3, which contained a BamHI site at one end (5'-GCGGATC-CATGTCGTTTGAACTGCTCAAGG-3'; the underlined seT. Fujii et al.

quence indicates a *Bam*HI site). Primer Ex2 was designed on the basis of the downstream sequence of ORF3, which contained a *PstI* site at the other end (5'-CTG<u>CTGCA-</u> <u>GAATTGCAGTCATGCAGTCACTC-3'</u>; the underlined sequence indicates a *PstI* site). Using *F* lutescens IFO3084 chromosomal DNA as a template, a PCR amplification was performed, *i.e.*, 25 cycles of denaturation (98°C, 20 s), annealing (60°C, 30 s), and extension (68°C, 2 min) with primers Ex1 and Ex2. The PCR product was digested with *Bam*HI and *PstI* and then ligated into pTrcHisA (Invitrogen) digested with *Bam*HI and *PstI*. The resulting plasmid, designated pTrcPCD, was prepared from the transformed *E. coli* TOP10. pTrcPCD provided a six-His-tagged PCD, which contained an additional enterokinase-recognition sequence (DDDDK) between PCD and the six-His tag.

Purification of Recombinant LAT and Recombinant PCD Expressed in E. coli TOP10—Recombinant LAT and recombinant PCD were expressed in E. coli TOP10 and purified as described previously (5).

Analysis of In Vitro L-AAA Production—Fifty microliters of recombinant LAT solution (25.4 µg/ml) and 50 µl of recombinant PCD solution (6.8 µg/ml) were added to 1.0 ml of 0.2 M phosphate buffer (pH 7.2) containing L-lysine HCl (20 µmol), 2-ketoglutarate (20 µmol), pyridoxal phosphate (0.075 µmol), and β -NAD⁺ (200 µmol). The mixtures were incubated at 32°C for 15 h. L-AAA was derivatized with phenylisothiocyanate and separated by reverse-phase highperformance liquid chromatography (8, 9).

Protein Analysis—SDS-PAGE and native PAGE analysis was performed using a Multigel 4/20 (DAIICHI PURE CHEMICALS). Total protein was quantified with a Protein Assay Kit I (BIO-RAD).

DNA Manipulation—Plasmids from F. lutescens and E. coli strains were prepared using a Qiagen Plasmid Kit (Qiagen). All restriction enzymes, T4 ligase, T4 DNA polymerase, and LA Taq polymerase were obtained from TaKaRa Biomedicals. DNA sequencing analysis was done using a BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (ABI).

Fig. 1. Complementation of the *pcd* mutant for L-AAA production. TLC analysis of L-AAA production from L-lysine by *F. lutescens* IFO3084 and its mutant, HGN1, harboring various plasmids. Lanes: 1 and 8, L-AAA (500 µg/ml); 2, L-lysine (500 µg/ml); 3, *F. lutescens* IFO3084; 4, HGN1; 5, HGN1 (pCF704); 6, HGN1 (pCF213); 7, HGN1 (pCF235).

		1	0			20)		3	30			40			50			6	0		7	0		8 ()		9 (0	Fig. 2	. (con	tinue	ed)
GGATO	2 G (1	GGC P	CA G	CTG S	GGC P	TC/ E	ACTG S	CTG S	GAC S	CGC. A	AAT(I	CCGA R	GT (T	GCCG G	GGA P	TGG H	CTC S	GGG' P	TTG. N	A A G	GTG5 T	TGC N	GGA R	TCAC	CGAT(GGC. P	ATC M	TGCO	C R				
-	-		-	-	•	-	-	-	5		-		-	-	-		-	-		•	•		••	-	-	-		•					
ecco		10 PGG	0 C C (ርምር	110 • • • • •) 1690		12	02 מיתנו	-	ן המכר	30 TTC			140	тъс	666	15) AGT) PCG	съ сс	16 CCT	0 1067	ርልጥ?	17(AGCT() : NGCI	GTC	18) 660	0				
A]	[A	P	S	M	T	Q	P	H	v	v	ĸ	A	G	F	Y	A	L	E	C	A	E	D 1	r S	L	T	A N	L				
		1.0	~			2.04	•					2	20						24			25	^		2.6				•				
GGGT	CAC	19 20 G	0 C C '	TCG	GGC	ACC	J Zacc	CGC	21	LU GTC:	GGC	ZGAC	20 AGC	ACA	CCG	TCG	лсл	ŦĊĠ	Z4 GTC	CAG	ATGI	CCA IGCA	GCT	CGGG	200 2000	, CTCG.	AAC	AGC	G				
T	1	,	A	E	Ρ	V	v	R	Р	Ð	A	S	L	v	G	D	v	D	Т	W	I	н	L	E i	A A	E	F	L	A				
		28	0			290)		30	00		3	10			320			33	0		34	0		35()		360	0				
CGGCI	A A J	AGA	TC	GCC	CCG	GAI	ATAA	TCG	СТС	GCC	GTT(GCGG	ccc	AGG	GTG	GTG	ATC	CTG	ccc	rgg	CCAT	CAC	GGG	CGAG	CAAAI	CCG	GTG	ACCI	A				
A	1	?	I	A	G	S	Y	D	S	G	М	R	G	L	Т	т	I	R	G	Q	G	D	R	Y /	F	G	Т	v	v				
		37	0			380	0		3 9	90		4	00			410			42	0		43	0		44()		45	0				
CCACO	000 F	3 C G २	AC' S		GGG P	TTC N	ЗТСС D	ACA V	CGC	CAC W	GGC(A	GGCC A	AGO L	STTG N	GCC	GCA	CTG	CGT' R	TCC(E	CAG W	TCG#	CGC V	TGA	ccco v o	CAGO	TCG E	DDD G	TGT(G				- ,
		•	-	ĸ	-		-	·					-				2		2		U	•	-			2	-		•••				
CGAC	° 8 1	46 101	0 60	AC A	TCG	470) 260 0	TCG	48 1940	30 - 1 C (4 3 C & G	90 660		ccc	500	666	ጥጥር	۱ 5 1 ۱ م م م	0 ГЪС	raar	52 • • • • •	0 6 C A	GCTO	53(2660() המסר	b b C	54	0 T 2		Ł	•	
v	1	1	L	V	D	R	A	D	L	V	A	C	P	H	G	L	R	N	F	Ŷ	R	G	L	L (2 A	S	F	V	E	-			
		55	^			560	.		5 -	7.0		5	80			500			60	n		61	0		621	,		634	0				
cgcco	CAC	SCC	cc	rgc.	ACC	CTI	, etca	AGC	ACC	TC:	CTC	Seec	AGG	ccg	CCG	ATC	ACC	GCC	AGC	GCT	TCCA	GCA	ACC	CGGG	CAG	, TTG'	TCA	AAG	C				
G	1		G	Q	v	R	Е	L	۷	E	E	Ρ	L	G	G	I	۷	Α.	L	A	E	L	L	G	A L	K	D	F	R				
		64	0			650)		66	50		6	70			680			69	0		70	0		710)		72	0				
GTCC	AT(CA	GC	CAC	TGC	AGO	AGG	TCG	GC	AGA.	ATC	TCG	ccc	AGC	AGT	TCG	GTG	GCC	GCT	TCA	TGGI	GGC	GCT	GGC	GCAG	GCC	TGC	CAG	G.				
G	1	J	ь	W	Q	г	Г	D	A	5	D	E	G	Г	г	Ľ	т	•	A	Е	в	н	ĸ	QI	ΚЬ	A	Q	W	A				
	_	73	0			740	0	_	75	50		7	60			770			78	0		79	0		80)		81	0				
CATCI	AC (]	SCC R	AG: W	CGC R	GGC P	TG 0	ACCG G	H H	GCO A	GC A	CAGO L	GTA T	GCC	L CAGC	TCG E	ATC I	AAG L	GCA' A	TCG(D	STG T	ACAC V	G CT	TTCA K	TCGC M /	CCGAC A S	V SACC	ACC V	ACC/ V	A V				
		• •	•																	•									•				
CCTG	GG	82 FGG	U GT'	FCC	GGG	830 CGC) : TGC	AGC	84 AGC	10 CA A	стс	४ उGCG	50 AC#	TGG	CGG	860 TAG	cgc	TGC	87 GCC	D Gag	GCC₽	88 1009/	io Ingg	TGC	890 2600) GAAC	TTG	90) TGG	0 G				
Q	5	r	Ρ	Ε	P	R	Q	L	L	L	E	A	v	H	R	Y	R	Q	X	S	A	v	S	T (GG	F	K	Ħ	A				
		91	0			920)		93	30		9	40			950			96	0		97	0		980)		996	0				
CGAT	GAO	СТ	GG	GCA	TCG	GGC	GCG	GGA	GCG	GGG	AGCO	GGGT	GC	GCG	GCA	GGC	GAT	GAC	ATC	ACA	ACÃO	SACC	TCT	GGGG	GTTG	GGC	CCG	GCA	C				
I	1	/	Q	A	D	Р	A	Р	A	₽	A	Р	A	A	A	Р	s	S	M	ORF	1												
	:	100	0		1	010	D	_	102	20		10	30		1	040		_	105	0		106	0		107)		108	0				
CGCA	GG	ΓTG	CG.	AAG	тсс	CGC	CAAC	CTG	GTC	CGG	TGC	GGGG	CCG	STTG	TTT	TCG	GGG	GTT.	AGA	CGA	ATAC	GAC	GGG	CCG	ENCCI	AGCC	AAG	TGG	г				
]	109	0		1	100)		111	0		11	20		1	130			114	0		115	0		1160)		117	0				
GGTG	GT/	AT	GA	IGG	TCA	TGC	CCGG	TGA	CGC	CA	GCAG	GCG	CC)	GCA	GGG	CGG	CAG	TGG.	AAT	CAA	CGGI	GGC	GCG	GCAG	GATCO	GACA	TGC	AGC	G				
	1	118	0		1	190)		120	00		12	10		1	220			123	ο.		124	0		1250)		126	0				
AGCA	GAC	CCG	CA	CAG	CGC	СТО	GCTG	CTG	TC?	AAC'	TGT	FGCA	TTO	CAA	AAT	AAT	TTT	CCG	CGC	ATC	ATCO	GCG	AAC	ATG	CACCO	GATT	ŦGG	TTG					
	:	127	0		1	280	D		129	90		13	00		1	310			132	0		133	0		134)		135	0				
AAATO	GT(GAT	CG	FCA	GCG	ATC	TTC	TGT	C A A	AAA	ccc	GCGG	ATC	AAG	CGG	CCA	CAG	CCG	CTG	CGG	CAGO	CGC	GGA	CCA	CCGC	GCGC	CGA	TGC	С				
	1	136	0		1	370)		138	30		13	90		1	400			141	0		142	0		1430)		144	0				
AGCG	cco	GGG	CG	GCA	GAG	CAP	AGCC	GCC	AGO	GC	AACO	GGC	CAI	TAC	CGC	GGC	CAG	GCG	CCG	GGC	CTGC	GCG	GCT	CAN	CGT	GAT	TTT T	TTC	С				
																								-	GI	1 1	л	Б					
]	145	0		1	460)		147	70		14	80		1	490			150	0		151	0		1520)		153	0				
CAGCO W E	GGC R	JCG A	TG H	GGC(A	CTG Q	CGC	CGGC A A	CAG	CAC	2CA) 7 1		GCC G G	GAC	CAA L	CAG L	CGC	AAT I	GGC	CAG L	CAG L	CTCC E	L:AGC	AGG L	GTCC T	P (CACG	CTG Q	CTG(Q	C				
			•		-																						-						
CAGAI	I EG <i>i</i>	154 \AG	v CC:	NTA	1 Nag	550 CAA	, ACGC	GAA	156 CAG	50 366'	FTTC	15 2888	70 C A C	GAT	1 CAG	580 CTG	ccc	GCC	159) CAG(u GCT	CAGO	160 GGC	AGG	CTG	161(GCG2	, EGGC	CCG	162) GTT(U C				
W	I	F	G	Y	L	I	L A	F	I		r I	E F	V	1	L	Q	G	G	L	S	L	P	L	s	R	r A	R	N					
	1 (530			16	40		1	650	0		166	0		16	70		1	680		1	690)	:	1700		1	710					
CAGC	GC	CA'	TT	SCC	CAG	CAC	CGA	GGC	ACC	GA	CGGG	CAG	CAG	CGC	ACA	GAT	GCC	GGC	A A A (STG	CAGO	CAC	TGG	ccc	rGGCi	CTG	ccc	GAG(C				
- 1 (-	м	N	G	L	, V	r S	A	. 0	3 1	v /	ւ հ		, A	- C	1	G	A	r	н	Ŀ	W.	v	6	V 3	, Q	G	Ŀ					

(continued)

	17	20		173	30		17	40			175	0		1760)		177	0		178	0		179	90		1	B O O	Fig. 2.
GGCCC PG	CAG L	CCAC W	AGC(L	GCC <i>I</i> A	AGC(L	GGCA P	GC# L	L L	AGC# L	ACG V	GCG. A	ATG I	GCC(A	G TG1	rggc r A	CA	cccc V G	GGT T	CAA(L	L	GAC S	CAGO W	A SCA	rgc H	GCG	GAC. S	AGG L	
	18	10		182	20		18	330			184	0		1850)		186	50		187	0		188	B 0		1	890	
TGCGG	GATA	GCGC	CGCI	ATCO	CACI	ACCA	CAT	TG	GCGI	ATC	GAG	TAG	CCAG	тсси	AGGC	GG	CCAG	GCGC	GGCO	CAGC	GCG	CAGA	GCI	AGG	ccc	AGC	ACC	
HF	р ү	R	R	M	W	v	v	N	X	I	S	Y	G	S I	N N	. 1	A I	, A	A	L	A	С	L	L	G	L	v	
	190	00		191	0		19	20			193	0		1940)		195	0		196	0		19	70		1	980	
RC	G G	JATG I	TCC: D	rtge K	G	SCAT A	D	:00) G	GCCG A	GC G	GCC	GCG	CCG! G	GGCC	CGAG	TGO	CAGC	CCA	GGCC	ACC: V	AGC L	AGCO T.	SAGO	GCC.	AGC / L	ACA(V	CAC	
	, 0	•	2		Ū		2	0			Ũ		Ū					• •		•	~		5	U	2	•	Ç.	
	199	90		20(00		20	010			202	0		2030	כ		204	0		205	0		20	60		2	070	
AGGCA		CGCC	GGT	GCC/	AGC:	rgac	GC	AC	GGC	٩GG	GCC	GTT	GGC	GCCG	GCGC	AT(CCAC	CGC	CGCC	CVCC	ACC	ACCO	GCI	ACC.	ATG	ccc.	ACG	
ЪС	. ц	м	r	А	ь	Ŷ	ĸ	Г	r	Г	A	т	P	ĸı	К А		יע		A	v	۷	v	P	v	п	G	v	
	201	B 0		209	90		21	00			211	0		2120)		213	0		214	0		21	50		2	160	
ATCAG	SCGCO	GCC	GCC	GCAC	CGG	CAG	ccc	AG	TGC	٩CG	GCC	ATC	GCCI	GAA	ACAC	GA	AAT	GAC	CAGO	GTTG	CCG	AGC/	GGG	СТС	AGC	CCG	GCC	
1 1	, x	A	A	A	G	G	A	W	H	V	A	М	A	LI	r v		FY	v	L	N	G	L	L	s	L	G	A	
	21	70		218	30		21	90			220	0		2210)		222	0		223	0		224	10		2	250	
AGGGC	CAG	CAG	GCGG	GGG	GAT	rc g a	сст	GC	GCAC	GC	AGC	GCC	GGC	CACA	ACGG	CA	GCAG	CAA	cgc	CAG	GCC	ACCO	CAC	CG	TAC	AGC	AGG	
LA	L	W	A	R	R	D	۷	Q	A	R	L	A	P	M I	L P	1	ΓI	, L	A	с	A	v	A	G	Y	L	L	
	221	50		227	10		22	• a o			229	n		2301	า		231	0		232	0		23	3.0		2	340	
TAGCO	GCC	CACG	GCCI	AGCI	rgc <i>i</i>	AGCG	CAG	GAA.	AATO	GCG	GTG	GTC	AAG	SCCG	GCGC	CA	GGAP	CAC	CATO	sccc	ČAC	AGGO	GCAG	CCG	GCG.	AGC	ACG	
YR	G	v	A	L	Q	L	A	s	F	A	Т	т	L	A I	P A]	LF	, v	M	ORF	2							
																								_		_		
CCGTT	23:	00 7 a c m	ccci	236	50 2000	2500	23	570 "TC"			238 TCC	0 እጥሮ	Acco	2390)	<u></u>	240 Стс)() ' a a mi	с х х (241	0		242	20	ccc.	2	430 30	
CCGII	UNA			ACC	50.00	3101	001	10	1100		100	n i C	ACG	.1007	1400	cu			GAAG		AGG		1000			HUC	JCA	
	244	0		245	50		24	60			247	0		2480)		249	0		250	0		25	10		2	520	
TGGGC	GCTO	GCA	GCTO	TCC	GAG	CTG	TGC	CAA.	AGGI	rgg	TGG	ccc	CGAG	CACG	ATTC	GA	ACGI	GCG	ACCI	FGTC	ССТ	TAGO	GAG	GGG.	ACC	GCT	CTA	
	253	30		254	10		25	50			256	0		2570	,		258	10		259	0		260	00		2	610	
TCCAG	CTG	AGCT	ACGO	GAGO		FGAG	GCC	GG	CGAI	TC	TAG	ĊAT	CCG	TCTO	CGT	тсі	ACGO	CCA'	TCGC	CCG	ĊAG	ccGC	AG	TTC.	ACA	GTG	CAG	
		_															•											
GGCN	263	20 2860		263	30		26	540 IGC		۰ <i>.</i>	265	0 C.C.C.		2660		The c	267	10	~~~~	268	0		269	90 560	CAC	2	700	
GOCAN		- AGC	ANG				001	GC.	AACU		CGC	GCC			INCO	161	ACCO			.000	AGG	ccc			CAC	GGC	LAC	
	27	10		272	20		27	30			274	0		2750)		276	50		277	O		271	80		2	790	
TGGCG	CCGG	STTC	CGCI	ACC #	ACGO	CAC	CGG	SCA.	ACAC	GC	CCC	CAG	ccci	GCCG	CAAC	GT	GGTG	TTT	CAGO	GCT	CTG	TTA/	GA	rgg	CAT	GCC	CAC	
	280	00		281	0		2 6	320			283	0		2840	,		285	0		286	0		28	70		2	880	
ATGCC	ACCI	rccc	cc <u>c</u>	GAC	GCC	GCCG	CGG	GT	GCGI	'G A	CCT	TTT	CGT/	ACG	, TAAT	СТО	GGAG	TTT	CCAI	GTC	ĞTT	TGAA	L.	GCT	CAAG	GCC	CTT	
				- 35							_	-10					SD	ORF:	в м	s	F	Е	L	L	ĸ	A	L	
																				-	•	-	_	_			_	
	289	90		290	00		29	10			292	0		293()		294	0		295	0		290	60		2	970	
AGGGC	TGG	ACGC	CACO	CAA1	TCC	CGGC	ACC	TA	ССТО	GGG	TGA:	TGG	AGA/	TGGI	FCCA	GC	GCTA N T		GTG(cGG	GAC	CATO	CAG	200) P	GCG	CAA	CCC B	
9 1		a	1	a	3	u	ŗ	L	ь	u	U	Ģ	6		3 3	'	к 1		~	G	1	L	э	r	ĸ	a	r	
	298	30		299	0		3 0	000			301	0		3020)		303	0		304	0		3 0 !	50		3	060	
GACCA	CCGC	GCGA	GGTO	TAT	GCC	CAG	GTC	CA	GGCO	CVC	CAC	CGA	GGC	GACI	TACG	**	ACCA	TCC	TGGC	CCG	CGC	CCAC	SC A	GGC	CTT	CAN	GGT	
тт	G	Е	V	I	A	Q	v	Q	A	Т	т	Е	A	DY	(Е		TI	L	A	R	A	Q	Q	A	F	K	v	
	307	10		308	80		30	90			310	0		3110)		312	0		313	0		314	40		3	150	
CTGGC	GCAC	CAC	cccd	GCA	cco	SCGC	CGC	GG	CGAG	GC	CAT	CCG	ссто	TGTO	GCG	AG	GCCC	TGC	GCCC	GCCA	CAA	GGAC	GCC	GCT	GGG	TTC	GCT	
W R	Т	T	Ρ	A	P	R	R	G	Е	A	1	R	L	c d	S E	1	A I	R	R	н	K	D	A	L	G	S	L	
	316	50		317	0		31	80			310	٥		3200	`		321	0		122	0		12	10		٦	740	
GGTCG	CGCI	GGA	AATO	GGGC	AAG	STCC	AAG	icc(GGA	GG	CGA	ĊGG	CGA	GTC	AGG	λΑ	ATGA	TCG	ACAT	rcgc	ČGA	СТТТ	192.	CGT	CGG	CCA	GAG	
VA	L	E	M	G	ĸ	S	ĸ	P	E	G	D	G	E	V Ç) E	I	M I	D	I	A	D	P	X	v	G	Q	S	
	3 7 5			2	0			. 7 ^			2 2 2	•			.					· · ·	0		· · ·	- ^		•		
CCGCA	JZ: TGC1	GTA	TGGC	526 TAC	ACC	CATG	CAC	AG	CGAG	5C G	228 200	, 193	CCA	3291 CGC2	י דה ד	AC	551 GAGO	, V Саст.	ACCI	331 3000	ህ Gርጥ	GGGG	53. CATO	∡υ CGT⊓	CGG	3 ርሕሞ	CAT	
RM	L	Y	G	Y	T	M	H	S	E	R	Р	G	H	R	1 Y	1	EÇ) Y	Q	Р	L	G	I	v	G	1	1	
0.000	334	0	~ ~ ~ ~ ~	335	0		33	60			337	0	C 40 m /	3380		0.01	339	0		340	0	~ • • • •	34	10		3	420	
S A	F	N	F	P	V	A	V	W	λ	W.	N	S	F	LI	λ λ		I C	G 10	D	V V	C	I	. T.O.(K	P	S	N	

J. Biochem.

CARCA	3430	መሮእሮ	3440	TCCCC	3450		346 N T C T C	0 C	347	0	3	3480		349	90	C N III C	3500)	35	10	Fig. 2. (continued)
K T	P L	T	À I	A	S M	R	I C	N E	A	LR	E E	G	G	F P	D	I	P F	r L	I	N	
	3520		3530		3540		355	0	356	0	3	3570		35	B 0		3590)	36	00	
CGACG	CCGGCA	CCGC	GTTGT	CGGAG	GAAGCT	GGTC	GAGGA	CAAGC	GCGTG	ccgc	TGAT	гстс	CTTC	ACCG	SCTC	GACC	CAGO	STCGG	GCGC	AT	
DA	GΤ	Å	LS	Е	K L	V	ED	KR	v	ΡL	, I	s	F 1	r G	S	Т	Q V	G	R	I	
	3610		3620		3630		364	0	365	0	3	3660		36	70		3680)	36	90	
V N	ACCAGA Q K	AGGT	A A	R	L G	R (TGCCT C L	L E	AGCTO L	G G	GCAA N	ACAA N	A :	ATCA: I I	rccr L	D	E 1	CCGC C A	D	CT L	
	2700		2710		2720		272	^		0				27	c 0		11 1	'n		80	
GAAGC	TGGCCG	TGCC	GGGCA	rcgto	TTCGG	CGCC	GTCGG	CACCG	CCGGC	CAGO	GCTO	GCAC	CACC		GCCG	ссте	SATCO	, GTGCA	CGAA	TC	
ΚL	A V	P	G I	v	FG	Y ,	V G	ŦΑ	G	Q R	c c	Т	Ť	r R	R	L	IV	/ H	Е	s	
	3790		3800		3810		382	0	383	0	3	3840		38	50		3860)	38	70	
GATCT I Y	ACGACA D N	ACGT V	GCTGG(L A	T T	TTGAT L I	CAAG K	GCCTА А Ү	CAAGC K O	AGGTO	GAAG E G	IGCA I K	AGAT I	CGGC(G 1	GATC(D P	L CGCT	GGAT D	GCCG A A	GCCAA A N	CCTG. L	AT M	
								~		•							205				
GGGCC	3880 CGCTCA	ACAG	3890 CCCCG	AAGCO	3900 GTGCA	GCAG	391 TTCCT	U GGCCT	CGATO	GAGA	AAGO	3930 CCAA	GGCC	394 GCTG	ŧU GCGG	CACO	3950 GTTC) CAAAC	CGGT	60 GG	
G P	LN	S	ΡE	A	V Q	Q	FL	A S	I	EK	A	K	A .	A G	G	T	V	γТ	G	G	
	3970		3980		3990		400	0	401	0	4	020		40	30		4040)	40	50	
TACCG	CGATCG	ACCG	CCCGG	GCAAC N	TTCGT F V	GCTG L	CCGGC P A	CATCG T V	TCACC	GGCC	TGA/	AGAA N	CAGC	GATGI D E	NGGT V	GGTC V	CAGO	CACGA I E	GACC	TT F	
				•		2		• •	-						•	•	¥ .		-	•	
CGCCC	4060 CGATCC	TGTA	4070 CGTAA	rgaa g	4080 STACTC	CACC	409 CTGGA	0 CGAAG	410 CCATC	0 GAGA	TGC	4110 Agaa	CGGC	41) Stgc(20 CGCA	GGGC	413(CTG1) 10070	41 GTCG	40 AT	
A P	ΙL	Y	V M	ĸ	ΥS	Т	LD	E A	I	E M	Q	N	G	V P	Q	G	LS	5 S	S	I	10
	4150		4160		4170		418	0	419	0		200		42	10		4220)	42	30	
CTTCA	CCACGA	ACCT	GAAGG	CAGCO	GAGAA	GTTC	CTGTC	GGCGG	ccccc	AGCG	ACTO	GCGG	CATT	GCCA.	ACGT	CAAC	TATC	GCAC	TTCC	GG	
r 1	1 1	Б	КЛ	n	L K	r.	5 3	~ ^		5 1		6	1.		v	a	1 (3		
TGCCG	4240 AGATCG	GCGG	4250 CGCCT	rcggi	4260 1960 GA	GAAG	427 GAAAC	0 CGGCG	428 GTGGC	0 Сбтб	4 1.1.570	1290 CCGG	ርሞርፍሰ	43) SATG	00 Сбтб	GAAG	431(GTC1) FACAT	43 GCGC	2 Ö C G	
A E	IG	G	A F	G	GE	K	ЕТ	G G	G	R E	S	G	S	DA	W	ĸ	VY	ем	R	R	
	4330		4340		4350		436	0	437	0	4	1380		43	90		4400)	44	10	
CCAGA	CCAACA	CCAT	СААСТИ	ACTCO	GACTC	GCTG	CCGCT	GGCCC	AGGGC	ATCA	AGTI	CGA	CCTG	TAAG	CCGC	TCGC	CACO	GCCC	GCCT	ΤC	
Q T	N T	1	NI	5	υs	. را	гь	ΛŲ	G	IK		D	Г	-							
CCCGG	4420	0000	4430 TGGCT(ንጥጥር/	4440 ACCAG	CCAG	445 AGGAG	0 ТСАСТ	446 GCATO	0 1).	4 	1470 FTGA	ATCG	44) • • • • • •	00 2000	ango	4490) 	45 CACT	00 TG	
		0000		51100		cent										neoc					
CGCCA	4510 TCCTGT	сбст	4520 GGTAC	FGGC <i>i</i>	4530 CTGCT	GGGC	454 TGGAA	0 TCTTT	455 TGCCG	0 GTGA	TTGO	4560 GCTT	TGTC	45 3606	70 2011	CATO	458(тјасо)_, GGCCG	45 CATC	90 GC	
	4600		4610		4620		463	0	464	0		\$650		4 6	60		4670	. <u>'.</u>)	46	80	
CCAGC	GCCAGC	TCAA	GCAGC	ccGGC	AATAC	CCAG	GACGG	ŤĊĂĊĠ	GCCTO	GCAA	GGGG	GGGG	CATC	rgga:	FC A G	TTGO	GATC	GCCT	GATC	СТ	
	4690		4700		4710		472	0	473	0	4	1740		47	50	:	4760)	47	70	
GGTTG	CGCTGC	TGAT	CGGCG	TCGTO	ATCCC	GTGG	TTGAC	cgccc	CGATC	ACGA	TCA	АССТ	GCCC	GTTT(CCAC	CTG?	ccci	CCTC	CCTG	сc	
	4780		4790		4800		481	0	482	0	4	830		4 8	40		4850)	48	60	
AGTCG	CCCATG	CGCT	GACAG	GCCA)	CCCGT	TTCC	TGCCT	GGACC	AGACC	ATGC	TCCC	GCC	CGAC	CATC	CGGC	TCCA	CCAT	rcgcc	CATT	GC	
	4870		4880		4890		490	0	491	0		920		49	30		494()	49	50	
CGGCA	LLACAA	CCTC	GACCA	TGGC	. IATGC	GGTG	GUUTÇ	GUTGG	TGATG	IG GC A	TCCI	I TGG	LTGG	IUGA	rgat	CCCG	SCTG1	TGGG	CAGC	ΑT	
	4960	Ŧ ĊŴM	4970		4980		499	0 	500	0	5	5010	C C A 794	503	20	እርምና	5030) :	50 GATC	40 Cm	
00000	CCATCO	1017		1016	σιιισ	3969	CAGAT	CUBTC	GCCAG		NULF	1000	CGAT	3011		AC 16		JOGCT	GATC	~ 1	
66607	5050 668767	ርናልጥ	5060 TGCGC	r6760	5070 ATCCT	CGGG	508 אדרכיי	0 66767	509 ፕፕፕፕር	0 ርጉርጥ	ידר חיי	5100 FTGG	race	51) ידב <i>ב</i> י	10 	ፍርዋና	5120 CTC) \GCC T	51 GAAC	30 GC	
55561		JUNI						00001							I	-		1		56	
CTGAC	5140 CCGAGC	CTTG	5150 CCGTA1	IGTAT	этео Тссст	GCTC	51/0 CGTCC	cgccc	5180 TGTTC	TGCA	51 TGGA	.90 \TGC(CGAGO	5200 GCG0	, CCA	5 TGGC	210 GCCG	GCCT	5 Z Z 0 GC GC (GC	
		0	R F4 H	Y	S L	L	R P	A L	P	СН	I D	A	E I	R A	H	G	A (; L	R	A	

RESULTS

Isolation of L-AAA Non-Producing Mutants—To search for pcd in the F. lutescens IFO3084 genome, mutant strains incapable of producing L-AAA were isolated by NTG mutagenesis. We hypothesized that F. lutescens IFO3084 with PCD activity would precipitate eosin Y when the pH of the media had fallen, resulting in red colony formation. Although most colonies of strains treated with NTG were red on the MEM-agar plates, some white colonies, thought to be L-AAA non-producing mutants, were obtained. As a result of TLC analysis of approximately 1,000 white colonies, six L-AAA non-producing mutants were obtained. Four of the six non-producing mutants showed little LAT activity, indicating a mutation in *lat*. The other two nonproducing mutants had the same level of LAT activity as the parent strain, suggesting that they had mutations in *pcd*. One of the possible *pcd* mutants was named HGN1, and the mutation in this strain was named *pcd1* (Fig. 1).

Cloning of a DNA Fragment Containing the Gene Complements of the pcd1 Mutation—To clone the gene complements of pcd1, a gene library was constructed and introduced into a pcd mutant, HGN1. Although most of the transformant colonies on the MEM-agar plates were white, some red colonies, in which pcd1 is considered to be complemented, were obtained. As a result of TLC analysis of approximately 500 red colonies, two L-AAA producing strains were obtained. Restriction analysis revealed that plasmids isolated from these two L-AAA producing strains

		523	0		52	240		5	250			526	0		52	270		5	280	1		529	0		53	00		5	5310
сст	GG	ATCI	TGC	CTA	cce	GCAG	GCGG	TAC	GCT	GGG	GC	FGC T	GGC	CAG	CCG	GCC	AGC	ACC	GCT	TCO	CAAC	CCG	CG	TTT	CGG	CCT	GGI	ATT	rccc
L	Ð	L	A	Y	R	S	G	Т	L	G	L	L	A	S	R	Ρ	A	P	L	Ρ	Т	R	A	F	G	L	E	F	Ρ
		532	0		53	30		5	340			535	0		53	860		5	370	1		538	0		53	90		9	5400
САА	cce	CGGI	GGG	сст	GGC	GGG	ccgg	сст	GGA	CAA	GA	ACGG	CGA	GCA	ТАТ	CGA	TGC	ACT	'бт Т	CGC	GCI	GGG	CT	TTGO	CTA	TGT	CGA	AAT	PCGG
N	P	v	G	L	A	A	G	L	D	K	N	G	E	H	I	D	A	L	F	A	L	G	F	G	Y	v	E	I	G
		5 4 1	0		5.4	20		5	130			544	0		5.4	150		5	460			5 4 7	0		5.4	80			
C & C		D G A C	.v .c.c.c		200	120 160	Acco	222	- 3 U	.	CC)			CCT	C.T.T.			- 	CG.							00			
слс т	. 00. V	голс т	D	.000	лссс р	001	-00C	600	N	D	001	D	P	1 J D D T	F	P	v	D		ับ	T	C 000	ν υ	T	מו		ы Ц	. 000	5111
1	•	1	I	K	ľ	×	'n	0	u	ľ	¥	1	N	'n		K	•	r	L		ц	U	•	T	a	K	п	G	r
		550	0		5 5	10		5	520			553	0		55	640		5	550			556	0		55	70		5	5580
CAA	CAI	ATGO	CGG	CGT	CG	TGO	CGCT	GGT	GGC	CYV	TG	rgcg	CGC	GGC	ACG	GCG	STGA	CCG	CGG	CVI	rcci	CGG	CA	FCAA	ACAT	CGG	SCV	GA	ACAA
N	N	X	G	v	D	A	L	v	A	N	v	R	A	A	R	R	D	R	G	I	L	G	I	N	I	G	K	N	ĸ
		559	0		56	600		5	610			562	0		56	530		5	640	1		565	0		56	60		5	670
GGA	CAG	cccc	CAA	CGA	GCI	GGG	CCA	TAC	CGA	TTA	CC:	rgac	CTG	сст	GGA	AAA	GGT	GTA	CGC	GCI	rggo	CGA	CT	ACAT	CAC	CGI	CA!	CAT	стс
D	Т	P	N	E	L	A	H	T	D	Y	L	T	с	L	E	K	v	Y	A	L	A	D	Y	I	T	v	Ħ	I	S
		568	0		56	90		5	700			571	0		57	20		5	730	I		574	0		57	50		5	5760
CTC	GCO	CAA	CAC	cGC	cGG	GC	rgcg	CGA	GCT	GCA	GGI	AAGA	ACA	GGC	сст	GCO	CGA	GCT	GGT	CAG	scco	CCI	GCO	GCGA	GGG	CCA			сст
S	P	N	Т	A	G	L	R	E	L	Q	ε	E	Q	A	L	R	E	L	v	S	R	L	R	E	G	Q	E	Ť	L
		577	0		57	80		5	790			580	0		58	310		5	820			583	0		58	40			850
GGC	CGG	CACO	CC A	TGG	CAA	GCO	GGGT	GCC	GAT	GCT	GG	CAA	GGT	CGC	GCC	GGA	ССТ	GAG	CGA	TGC	c GJ	TGT	ĊĠ	TGC	cGC	CGC	cce	TGI	GCT
A	A	R	H	G	K	R	۷	P	M	L	v	K	v	A	P	D	L	S	D	A	Ð	v	D	A	A	X	R	v	L
		586	0		58	170		5	880			589	0		59	000		5	910			592	0		59	30		5	5940
GGC	AG	AGCI	GCA	GGT	GGA	CGG	GGGT	GAT	CGC	CVC	CAR		CAC	CAT	CGC	GCG	CGT	GGG	CAT	GGA	AAA	CCA	cco		GGC	CAG	CG/	GGG	CGG
A	E	L	Q	v	D	G	۷	I	A	Ŧ	N	T	T	I	A	R	V	G	M	E	พ	Н	Р	L	A	S	E	A	G
		595	0		59	6.0		5	970			598	0		59	90		6	000			6.01	0		60	2.0		f	5030
CGG	cc	TGTC	CGG	GGC	ACC	GG	rg a T	GGC	GCG	стс	CAG	CGC	GGT	бст	GCG	icce	сст	GCG	CAC	cce	GCT	1001 1001	GGJ	GTC	GAT	ccc	GCT	GAT	2027
G	L	S	G	A	P	v	H	A	R	S	T	A	v	L	R	R	L	R	T	R	L	P	E	s	I	P	L	I	G
		604	0		60	15.0		6	060			607	n		6.0	180		6	090			610	0		61	10		f	5120
CGT	ירהנ	000	С л т	יריים		000	2222	TG.	000 007	222	660	1007	G A T	GAG	TGC	, 000 100			'C & T	667	icc.		נידטי		202	то 10	1001	ነ ዋጥ በ	0006
v	G	G	I	c	S	G	A	D	A	A	Å	ĸ	M	S	A	G	A	T	M	v	Q	L	Ŷ	S	G	L	v	Ŷ	R
		613	0		61	4.0		6	150			616	0		61	70		6	180			619	0		62	00		ŕ	5210
CGG	cco	GGC	ACT	GGT	CGG	cG	AATG	CGT	CGA	ATC	GAT	rccg	CCG	ccg	GCG	CGA	AGC	GCC	CTC	CAG	CGG	GGT	AGO	CCA	TCT	GTG	AGT	ACO	SCCG
G	P	A	L	v	G	E	c	v	E	S	I	R	R	R	R	E	A	P	S	S	G	v	A	Н	L	+			
		622	0		62	30		6	240			625	0		62	60		6	270			628	0		62	90		e	5300
GGC	TGO	GCAG	CTG	CAC	CAC	GAT	GTC	GCA	CTG	CAA	TCI	ATG	AAC	ACC	TTC	GGG	GTA	GCG	GCC	ACC	GCG	CCG	CGG	CTG	CTG	CGC	GTO	CAC	GAC
		631	0		63	20		6	330			634	0		63	50		6	360										

AGCCAGGCCCTGCCGGCGCGCTGGCGCACCCGGAAGTAGCCGGACAGCCGTTGATC

Fig. 2. Nucleotide sequence of pcd and its deduced amino acid sequence. A potential ribosome binding site (RBS) and -35, -10 promoter sequences (-35 and -10) of pcd are double underlined and underlined, respectively. NotI sites are boxed. The DNA sequence in this region has been deposited in GenBank (accession no AB042983).

PCD	F.lutescens	1	WSFELTEALTIDATHSGTYLODGERSSATGAGIISPRNPTIGEVIAQVOATIEADTITILARAQQATKVARLIPATHKOE	80
ADH	C.elegans	1	MASQLLIN-DSKYGFLREIGUTENNAGYFHIKNAASGQVVQSFAPANNSPIANVQNGNVQDTIHISEAKKAYNDAGEVIYAPRKG	85
PCD	S.clavuligerus	1		80
PCD	F.lutescens	81	A IFL COBAL REHEDAL OST VALLEVOPSKOL ODGI VOLMEDIADE AVGOSROL TOYIMOST REGERAVEDVOCE OLIVOLI SAFNI PVAVWA	170
ADH	C.elegans	86	IVRQIODKURTQUDAL OST VSLEMGE ISALGVOE VOLVETVOL COMAŬGUSK <mark>SLEGKI F</mark> EM REGRALLEONA EL OVVOVESAFNI PVAVWA	175
PCD	S.clavuligerus	81	LVRRFOELLTEHEODLADI VI ILAGE IRSIALGI VOLMIDI COEAVOL SKOL FORIMESTROGRE DE HAVOVI SAFNI PVAVWA	170
PCD	F.lutescens	171	MAS FLAA ID GUV CIWAFYSNKTIVL TATASHRI CMIALRE GUFUDIFF-ITINDAGTAL SEKT VEDRRVITI 157 TOS. DVORTVNOKVAARLO	259
ADH	C.elegans	176	MANALALVIJONSVV MENAPSTRLIA LAVTKUV ELVLVANNY NPALCSLVCUEGUVO-QALVKURKVUTVNT IGSE IDRUVGOVOARLO	264
PCD	S.clavuligerus	171	MAAMALVGGUTVVMENBELTFI NRAACAALLULMIADAGAUXGUNQVVGUAADVGERLVDSP-RVPLVSQI 1551 IRVGRAVGPRVAARLO	259
PCD	F.lutescens	260	BOLLEL GGRMAFTLEDUTGADEKTAVI GAVG FAGORET FIBRETVHEST FONTATETIRA XOVEGKI GDELUAAND GOELNS PEAVO	349
ADH	C.elegans	265	KLEEFT GGRMAFTVN EDADENNVY PATY FAAVG FAGORET FIBRETVHDKVY DOVLERINKA YAMFI SRIMOULESNITT IGPT DOOLVG	354
PCD	S.clavuligerus	260	BTTLET GGRMAAVYTPSADIDITVNAAVFAAAGFAGORET FIBRETVHEDTADIVVERTTABFEREPLGDEFQOTTTVDELVBEABFO	347
PCD	F.lutescens	350	QFLAN <mark>I EXAMAANG IN QTOGTA I DRP ONFVI F-ATVIGI ENSDEVVQHETTAPITI TVARI NITI DI ATEMONOVOOTI NNSTI FI</mark>	431
ADH	C.elegans	355		436
PCD	S.clavuligerus	348		436
PCD	F.lutescens	432	TRIKAA ERFLSAAGS-DUGTARVNTGTSGAFLTGAFAGGFFLTG-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-	501
ADH	C.elegans	437		506
PCD	S.clavuligerus	437		496
PCD ADH PCD	F.lutescens C.elegans S.clavuligerus	502 507 496	LAGG1FTDL LAGG1FTE-	510 514 496

PCD from F. lutescens IFO3084 with other aldehyde dehydrogenases. Alignment of the deduced amino acid sequence of PCD from F. lutescens IFO3084 (PCD F.lutescens) with a hypothetical aldehyde dehydrogenase from C. elegans (ADH C.elegans) and PCD from S. cla-

Fig. 3. Comparison of the deduced amino acid sequence of vuligerus (PCD S.clavuligerus). The solid and broken bars indicate the probable NADH binding motif (TGSTQVGR) and the aldehyde dehydrogenases glutamic acid active motif (LELGGNNA), respectively.

contained the same insert DNA. One of the plasmids was named pCF213 (Fig. 1).

Nucleotide Sequencing-The nucleotide sequence of the insert DNA of pCF213 is shown in Fig. 2. We found four potential ORFs in the sequenced region (6,357 bp). Although ORF1 had a deletion in the C-terminal region, it started at ATG (nucleotide position 958) and may end in the upstream unknown region of the insert DNA. Using the BLAST computer algorithm, the deduced amino acid sequence of the protein encoded by ORF1 showed strong similarity to the aspartate kinase-homoserine dehydrogenase from Arabidopsis thaliana (39% identity in 296 amino acids). ORF2 started at ATG (position 2315) and ended at TGA (position 1422). The protein encoded by ORF2 showed strong similarity to a hypothetical 35.5 kDa protein from E.

TABLE I. L-AAA production analysis in vitro.

Enzym	e added	Concentrat	ion (µg/ml)
LAT	PCD	L-Lysine	L-AAA
+	+	1,829	57
+	-	2,943	N.D.
—	+	3,597	N.D.
-	-	4,183	N.D.

N.D., not detected.

coli (32% identity in 301 amino acids). ORF3 started at ATG (position 2855), ended at TAA (position 4387), and was proceeded by a possible ribosome binding site (positions 2846 to 2849) and -35, -10 promoter sequence (positions 2805 to 2810 and 2829 to 2835). This ORF encoded a protein of 510 amino acids with a deduced molecular weight of 54,400 and showed strong similarity to a hypothetical aldehyde dehydrogenase from C. elegans (51% identity in 508 amino acids) and PCD from S. clavuligerus (48% identity in 485 amino acids) (Fig. 3). The Prosite program revealed that the sequence TGSTQVGR (amino acids 241 to 248) corresponds to the NADH binding motif and the sequence LELGGNNA (amino acids 263 to 270) corresponds to the aldehyde dehydrogenase glutamic acid active motif. Furthermore, pCF235, containing ORF3 as a unique complete ORF, complemented pcd1. Thus ORF3 was thought to be a structural gene (pcd) for PCD activity. ORF4 started at ATG (position 5150) and ended at TGA (position 6202). The protein encoded by ORF4 showed a strong similarity to dihydroorotate dehydrogenase from E. coli (51% identity in 335 amino acids).

Expression of pcd in E. coli and L-AAA Production Analysis In Vitro-To determine whether ORF3 codes for a single subunit with PCD activity, the gene was expressed in E. coli and tested for PCD activity. The entire ORF3 was amplified and ligated into pTrcHisA to construct a recombinant PCD expression vector of pTrcPCD. The expressed and purified recombinant PCD (six-His-tagged PCD) gave a single band on SDS-PAGE corresponding to a molecular mass of about 58,000 Da (Fig. 4A), which is in good agreement with that (58,500 Da) estimated from the deduced amino acid sequence. Using recombinant PCD and recombinant LAT (5), L-AAA production analysis *in vitro* was performed. L-AAA was detected only in the presence of both the recombinant LAT and the recombinant PCD (Table I). Since LAT catalyzes the conversion of L-lysine to P6C (4, 5), it is obvious that the recombinant PCD catalyzed the conversion of P6C to L-AAA. Taken together, it is concluded that ORF3 is a structural gene for PCD activity and ORF3 is identified as *pcd*.

Molecular Mass of PCD—The molecular mass of the recombinant PCD was estimated to be about 58,000 Da by native PAGE (Fig. 4B), which is in good agreement with the value obtained by SDS-PAGE. These results indicate that the enzyme is active as a monomer.

DISCUSSION

Here we cloned and sequenced the pcd gene from a gramnegative bacterium, F. lutescens IFO3084, encoding PCD, and demonstrated that L-AAA is synthesized from L-lysine in two steps catalyzed by LAT and PCD. The deduced amino acid sequence revealed that PCD from F. lutescens IFO3084, as well as LAT, shows strong similarity to that from S. clavuligerus. In addition we showed that PCD from F. lutescens IFO3084 is active as a monomer, as is the case for PCD from S. clavuligerus (6).

In actinomycetes, PCD activity was found only in β -lactam antibiotics producers, not in non-producers (6), suggesting that this enzyme is involved in secondary metabolism, *i.e.* β -lactam antibiotics biosynthesis. In fact, the *pcd* gene from *S. clavuligerus* was located in the β -lactam antibiotics gene cluster (7). In the present study, we cloned and sequenced four ORFs, including *pcd* from *F. lutescens* IFO3084. The protein encoded by ORF1 showed strong similarity to aspartate kinase–homoserine dehydrogenase, which is known to be a key enzyme in lysine biosynthesis (10). The protein encoded by ORF4 showed strong similarity to dihydroorotate dehydrogenase, which is known to be related to pyrimidine biosynthesis (11). This suggests that *pcd* in *F. lutescens* IFO3084, as ORF1 and ORF4, may be involved in primary metabolism.

L-AAA is a rare amino acid and has been widely used as a precursor for various beneficial chemicals including β -lactam antibiotics. We have been manufacturing L-AAA by the bioconversion technique using *F. lutescens* IFO3084. It is noteworthy that the bioconversion of L-lysine to L-AAA, unlike chemical synthesis, preserves chirality. Therefore, it is highly useful to establish genetically-engineered F. lutescens IFO3084 or recombinant E. coli using lat and pcd, which would dramatically improve the L-AAA manufacturing efficiency. On the basis of these ideas, we are currently constructing L-AAA producing microorganisms and will realize a high productivity of L-AAA in the near future.

REFERENCES

- 1. Madduri, K., Stuttard, C., and Vining, L.C. (1989) Lysine catabolism in *Streptomyces* spp. is primarily through cadaverine: β -lactam producers also make α -aminoadipate. *J. Bacteriol.* 171, 299–302
- 2. Coque, J.J., Liras, P., Laiz, L., and Martin, J.F. (1991) A gene encoding lysine 6-aminotransferase, which forms the β -lactam precursor α -aminoadipic acid, is located in the cluster of cephamycin biosynthetic genes in *Nocardia lactamdurans J. Bacteriol.* 173, 6258–6264
- 3. Tobin, M.B., Kovacevic, S., Madduri, K., Hoskins, J.A., Skatrud, P.L., Vining, L.C., Stuttard, C., and Miller, J.R. (1991) Localization of the lysine ε -aminotransferase (*lat*) and δ -(L- α -aminoadipyl)-L-cysteinyl-D-valine synthetase (*pcdAB*) genes from *Streptomyces clavuligerus* and production of lysine ε -aminotransferase activity in *Escherichia colt. J. Bacteriol.* 173, 6223–6229
- 4. Soda, K., Misono, H., and Yamamoto, T. (1968) L-Lysine: α -ketoglutarate aminotransferase. I. Identification of a product, Δ -1piperideine-6-carboxylic acid. *Biochemistry* 7, 4102–4109
- Fujii, T., Narita, T., Agematu, H., Agata, N., and Isshiki, K. (2000) Characterization of L-lysine 6-aminotransferase and its structural gene from *Flavobacterium lutescens* IFO3084. J. Biochem. 128, 391-397
- 6. De La Fuente, J.L., Rumbero, A., Martin, J.F., and Liras, P. (1997) Delta-1-piperideine-6-carboxylate dehydrogenase, a new enzyme that forms α -aminoadipate in *Streptomyces clavuli-gerus* and other cephamycin C-producing actinomycetes J. Biochem. **327**, 59-64
- Perez-Llarena, F.J., Rodriguez-Garcia, A., Enguita, F.J., Martin, J.F., and Liras, P. (1998) The pcd gene encoding piperideine-6carboxylate dehydrogenase involved in biosynthesis of alphaaminoadipic acid is located in the cephamycin duster of Streptomyces clavuligerus. J. Bacteriol. 180, 4753-4756
- Heinrikson, R.L. and Meredith, S.C. (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. *Anal. Biochem.* 136, 65–74
- 9. Bidlingmeyer, B.A., Cohen, S.A., and Tarvin, T.L. (1984) Rapid analysis of amino acids using pre-column derivatization. J. Chromatogr. 336, 93-104
- Kikuchi, Y., Kojima, H., and Tanaka, T. (1999) Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of *Escherichia coli. FEMS Microbiol. Lett.* 173, 211-215
- Larsen, J.N. and Jensen, K.F. (1985) Nucleotide sequence of the pyrD gene of Escherichia coli and characterization of the flavoprotein dihydroorotate dehydrogenase. Eur. J. Biochem. 151, 59-65